

INDONESI/

Indonesian Water Balance and Waterfootprint

YAB Labmath

LabMath-Indonesia, Bandung

19 May 2009, APN-Symposium Effects of CC on CoastalZoneManagement

Focus

Effects of Climate Change may have large impacts. Modelling and simulation tools can help to mitigate > predict expected effects of CC, > predict effects of proposed actions

(management, policy)

For Environmental water (agriculture)

Effects of CC and human activities

> urbanization,

- > deforestation,
- > change of crop-growth

have large influence on (ground) water.

CLIMATE CHANGE

INDONESIAN WATER BALANCE

INDONESIAN WATER FOOTPRINT

- Detailed Model
- Tables

Indonesian Water Balance

Global Water Balance

Precipitation = Evapotranspiration + overland run-off + river discharge + ground water Depend on:

climate/weather land-use , crop human / industrial use

Aim:

DATA-ASSIMILATED HYDROLOGICAL MODEL (Spatial and

Temporal)

For management/policy:

What is Effect of Changes (agricultural use, Climate Change)

Effects of Climate Change on Environmental Water

Water balance

THE HYDROLOGICAL CYCLE

-ABMAT H

NDONESI

INDONESIA

Data-based hydrological models

NDON

Potential water availability (TP) and per-capita water supply (PC)

Peter E. Hehanussa

INDON

Peter E. Hehanussa

"Agriculture beyond Food" $\operatorname{KNAW} N \mathcal{W}O$

Application for research cluster:

Modelling Indonesian Water Flow

PI's: H. Partiwan (IPB) & M. Booij (UT)

Projects:

- 1. Modelling the total water balance in Indonesia (H. Partiwan& M. Booij)
- 2. Modelling and measuring the evapotranspiration (Satyanto Krido Saptomo & B. van Groesen)
- Remote sensing techniques to support quantitative water cycle monitoring for agricultural water management (M. Ardiansyah & C. Mannaerts)

Stake holders: KLH – RISTEK – Deptan - BMKG

Relevance to understand Environmental water

Indonesian Peatland (60% of world):

Quote from PanEco &YEL

" Palm oil expansion is a social & ecological disaster " WISE USE of Tropical Peatland:

" The MRP and its associated fires are the largest

landscape disaster in recent times anywhere in the world."

Ground water

Effects of CC and human activities (urbanization, deforestation, change of crop-growth) have large influence on (ground) water.

Math/physical modelling will give insight in effects, and tools for management/policy. (Remember Jamaluddin Jompa: " we need

scientific 'proof' to convince people/governments")

Figure 2.2: Geographical distribution of peatland in Malaysia and Indonesia

CLIMATE CHANGE

► INDONESIAN WATER BALANCE

INDONESIAN WATER FOOTPRINT

Detailed ModelTables

INDONESIAN WATER FOOTPRINT of agricultural products, LMI'08

Study executed at LabMath-Indonesia

- Gullit Widarta, LabMath-Indonesia
- Rik Bulsink, UTwente
- > Mees Beeker, UTwente
- **Co-supervision**
- Prof. Arjen Hoekstra, UTwente
- Dr. Martijn Booij, UTwente

Reports:

- F. Bulsink: The water footprint of Indonesian provinces, July 2008
- P.M. Beeker: External water footprint of Indonesian provinces, July 2008

LMI - 25 August 2008

Andonowati, A. Sopaheluwakan, Van Groesen

Acknowledgement

- Prof. Peter Hehanussa (LIPI)
- Prof. Bustana Arifin

INDONESIAN WATER FOOTPRINT of agricultural products

www.waterfootprint.org

Main References

- ≻ [A]:
 - J.A. Allen, 1998, Virtual Water: A strategic resource, global solutions to regional deficits, *Groundwater* 36(4): 545-546.
- ≻ [H-C]:
 - > A.Y. Hoekstra & A.K. Chapagain, 2008, *Globalization of Water*, Blackwell.
 - A.K. Chapagain & A.Y. Hoekstra, 2004, Water footprints of nations, Value of Water Research Report Series no. 13, UNESCO-IHE, Delft.

1 cup of coffee

??? Litres of water \rightarrow 1 kg of RICE

NDONESI/

Indonesian Water Footprint: Concepts

Virtual Water Content [A]

The volume of water that is actually used to *produce* a commodity.

Water Footprint [H-C]

Virtual Water consumed by the inhabitants of a region.

Water types

Green: rainwater available for crop growth.

Blue : groundwater and surface water through irrigation

[]

Gray : water needed to dilute toxic remainders from fertilizer (nitrate)

 −	Country	Water Footprint (m ³ /y/ capita)	% External component
	China	700	7%
	Japan	1150	65%
	Indonesia	1317	10%
	USA	2500	19%

Indonesian Water Footprint: Model

Water Footprint Follows from VWC and consumption & in-export data.

Virtual Water Content

Water use for Crop growth: VWC = CropWaterUse/Yield [m3 /kg]

Crop Water Use:

 \succ for Evapotranspiration (ET) = Evaporation + Transpiration water vapour from water vapour ground surface from crop

 \succ for dilution of toxic remainders from fertilizer ('gray').

NDONESI

Indonesian Water Footprint: Model

Model CWU ≈ K x ET₀ + 'gray' $ET_0 = CWU$ for 'normalised' crop
(physical model, only dependent
on meteorological data)K : factor dependent on CROP

INDONESIAN WATER FOOTPRINT of agricultural products, LMI'08

Justification - specification

- > DATA:
 - Meteorological: FAO & BMG
 - Crop parameters: FAO, [A], [H-C], yield data: DepTan; in this study specific for Indonesia
 - International transport of crops: BPS;
 NO data for inter-province tranport (modelled by production/consumption)
- PERIOD: 2001 2004
- Selection of CROPS [ONLY agricultural products in WFp]
 - Restricted to 10 crops: Rice, maize, cassava, soybeans, fruit, groundnut, coconut, oil palm, bananas, coffee, cocoa beans
 - > Selection motivated by major coverage:

> 77% of the total production,

> 86% of total water use and of total agricultural land use

> Model for human consumption FAO

INDONESIAN WATER FOOTPRINT of agricultural products, LMI'08

Study executed at LabMath-Indonesia WARNING

The presented results are 'as good as possible'.

Main reason for insecurities and deviations:

- Global: Poor quality of weather data (measurements); modelling of areal rain from isolated measurement points
- Local: Data about inter-island trade of products (and hence virtual water) are unkown; hence external component rather insecure.

Yet,

The main (global, averaged) results obtained agree quite well with the literature, despite differences in some modelling parameters.

INDONESIAN WATER FOOTPRINT

INDONESIAN WATER FOOTPRINT

Calculated Evapotranspiration

INDONESIAN WATER FOOTPRINT

Virtual Water Content of rice

INDONESIAN WATER FOOTPRINT

<u>Tbl</u>

NDONESIA

Virtual Water Content

AVERAGED	OVER INI	DONESIA	
CROP	VWC (m³/ton)		
5	LMI'08	H-C	
Coffee	22910	17665	
Cocoa	9406	9959	
Rice	3340	2150	
Groundnut	2968	2231	
Coconut	2854	2071	
Maize	2396	1285	
Soybeans	1878	2030	
Banana	849	1074	
Oil Palm	848	635	
Cassava	497	460	

<u>Tbl</u>

Differences between LMI'08 and H-C:

- ET calculation based on climate data:
 - H-C use climate data (Mitchell, 2003),
 - > LMI uses CLIMWAT (FAO, 2008c) and BMG-data
- LMI uses different monthly values for ET for each province, H-C use one set of monthly ET.
- LMI includes gray component, H-C do not.
- LMI values are specific for Indonesia , H-C values are general for tropical zones.
- LMI data from 2000-'04;
 - H-C data from 1997-2001 (economical crisis)

INDONESIAN WATER FOOTPRINT

Water Footprint (agricult prod's)

INDONESIAN WATER FOOTPRINT

WATER FOOTPRINT details/discussion

INDONESIAN WATER FOOTPRINT

INDONESIAN WATER FOOTPRINT

Summary

Main results

- WFp for agri products is almost the same as HC-result.
- WFp /cap is for 70% determined by rice consumption (150kg/yr).
- VWC of the same crop can differ factor
 2 over the provinces.
- WFp /cap in Jakarta is only half of that in Kalimantan caused by difference in VWC of crops from Kal and from Jawa.

	VWC Rice m3/ton	WFp m3/cap/yr
Indonesia (average)	3340	1092
Kalimantan Tengah	4908	1760
Jakarta	2766	841